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Abstract. The time evolution of the irreversible catalytic recombination process A + B + inert 
is studied both analytically and by computer simulation. A rate equation describing this 
process is derived. For situations where one of the species poisons the catalyst, the minority 
species, for low coverages, is found to decay exponentially. Computer simulation results 
confirm this exponential decay for low coverages. Near the poisoning transition, xA = xB, 
the average relaxation time is found to diverge as 50:(0.5-xA)-’ with 3 -  1.3. Here xA 
and xg are the compositions of A and B in the gas. 

The kinetics of the irreversible diffusive recombination process A +  B -$ inert has recently 
attracted a great deal of experimental and theoretical interest in condensed matter 
physics and chemical kinetics [ 1,2]. The mean-field description of such processes may 
be written as [3]: 

dXA( t ) /dt  = - h A (  t)XB( t )  (1) 

where xA( t )  and xB( t )  are the densities of species A and B at times t and k is the rate 
constant. A similar rate equation can be written for the evolution of xe(t). For long 
times this equation gives 

xA( t )  z I /  kt for xA(0) = xB(0) (2a) 

x A ( ~ )  -exp[-k(xdO) -xA(O))fl for xA(0) < xB(O). (2b) 

and 

Inclusion of spatial fluctuations in the particle densities, however, gives the 
asymptotic solutions [ 11: 

XA( t )  1/ kt“ for xA(O) = xB(0) ( 3 a )  

xA( t )  e x p [ - C ( X B ( 0 ) ” 2 - X A ( 0 ) 1 ’ 2 ) f n ]  for xA(0) < xB(O) (3b) 

and 

with a = d/4. 
To our knowledge very little similar published literature exists for the corresponding 

catalytic irreversible recombination process A + B + inert, where the species react with 
each other only after getting adsorbed onto a catalytic surface. In contrast to the 
diffusive recombination process where the reactants A and B are not replenished during 
the reaction, in this case both the reactants are constantly being replenished from the 
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gas. We consider a situation where the supply of A and B is unlimited and their 
diffusion coefficients are infinite, so that xA and xB are time independent. For situations 
where the desorption of A and B, after their adsorption, may be neglected and the 
reaction product AB instantly leaves the surface, the catalyst eventually becomes 
poisoned by one or other of the reactants except when xA = xB [4]. For xB > xA the 
number of minority adsorbed species per lattice site, e A ,  decays with time. The closer 
one is to the poisoning transition xA = xB, the slower is the decay of @ A .  

In analogy with the surface reaction model for the catalytic oxidation of carbon 
monoxide [4,5] we assume an infinite reservoir of reactants A and B in the gas of 
compositions xA and xB; x,+x, = 1. The desorption of A and B from the catalytic 
surface is neglected. The reaction product AB, which is formed only when A and B 
occupy nearest-neighbour sites, instantly leaves the catalytic surface. In this case the 
adsorption of A atoms next to adsorbed A atoms leads to the enhancement of @A while 
that of B atoms will consume A atoms already adsorbed. The probability of occurrence 
of both these processes is proportional to 6 ( e A ) ,  the average number of vacancies 
neighbouring the adsorbed A atoms per unit active site of the catalyst. New islands 
of A can also become nucleated in regions away from adsorbed A and B atoms. If 
we ignore the contributions of such islands to @A( t )  then in the mean-field approxima- 
tion we may write 

deA( t ) /dt  = - k ( x B - x A ) b ( e A )  for XB > XA (4) 

The average cluster size i ( e A )  per unit active site and 6 ( e A )  are both expected to 
where k is a rate constant which includes both the reaction and adsorption rates. 

increase with e A .  If we assume thatt 

FA( e)  a e: ( 5 )  

then (4) gives 

e A ( t )  a exp [-(xB - XA)tn 1 for S = l  ( 6 a )  

and 

e A ( t ) a  i /r’’(6-’)  for S # 1. ( 6 b )  

In order to test these ideas we have simulated the model system for the irreversible 
catalytic recombination process described above. We started with an empty lattice of 
40 x 40 sites, using periodic boundary conditions. Figure 1 shows the results of 6( 6,) 
as a function of 6 A .  We can distinguish two different regimes, with the transition 
between them taking place for coverage 6 A  lying between 0.01 and 0.02. The value of 

t For very small values of 0, one expects clusters to be well separated, so that 6( e,) = X5 nrbr/Zr nrr  where 
n, is the number of A clusters of size 5 with b, as its boundary. At low coverages the clusters are small in 
size and their perimeter is proportional to their size, while at higher coverages less than the percolation 
threshold we expect to get ramified clusters. In either case b, s, so that 

i = Zsn,  / X n s  = 6, 

b(B, )=Pb ,n , /Zn , I . I sn ,= i=  EA 

and in general we may write 

6( e,) = e; .  
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Figure 1. Average number of vacancies 6( 6,) neighbouring the adsorbed A atoms plotted 
against the coverage 8, of the minority species on a log-log scale for concentrations: 0.501 
(e); 0.503 (0); 0.505 ( x ) .  

6 as given by the slope of the curves changes from 1 .OO f 0.05 for low coverages (longer 
times) to a value less than unity for higher coverages (intermediate times). In order 
to see the effect of still higher coverages of the minority species (e,) on 8, we started 
the simulation with a lattice that is initially 75% covered with the A type of atoms. 
For low coverages we get agreement with the results obtained with an empty lattice, 
while for higher coverages, 6 ( e A )  goes to a maximum and decays again with further 
increase of coverage. This suggests that equation ( 6 a )  corresponding to an exponential 
decay is valid only in the asymptotic limit of low coverages. 

The simulation results for e,(?) as a function of time (figure 2) seem to confirm 
this contention. We find that indeed the coverage e,( t )  decays exponentially for low 
coverages (less than 0.1). For very low coverages, however, we get a certain deviation 
from this exponential behaviour. A plausible explanation is linked to the statistics of 
our results. For longer times (low coverages) one gets a scatter in the results due to 
the fact that the closer one is to the poisoning transition the greater are the fluctuations 
in 6,. Moreover, the time after which the catalyst gets poisoned also fluctuates over 
a wide range. Though the results shown are averaged over 400 different runs, the 
averaging for longer times (low coverages) is over smaller and smaller runs due to this 
factor. It is therefore possible that the deviation from an exponential behaviour is 
only a statistical anomaly, and our results are consistent with an exponential behaviour, 
as predicted by the analytical treatment for 6 = 1. 

The relaxation time given by the inverse of the slope of the straight portions in 
figure 2 becomes larger and larger as one approaches the poisoning transition. The 
relaxation times are plotted in figure 3 as a function of (0.5-x,). Close enough to 
the poisoning transition, xB = xA = 0.5, one gets a straight line with a slope y = 1.3. 

Preliminary calculations on the irreversible catalytic reaction of carbon monoxide 
and oxygen to form carbon dioxide suggest a value of 6 = 1 and an exponential decay 
for the coverage (adsorbed oxygen atoms) for both intermediate and long times [6 ] .  
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Figure 2. Coverage OA of the minority species plotted against time on a semilog scale for 
concentrations: 0.501 (0); 0.502 (A); 0.503 ( x ) ;  0.504 (0); 0.505 ( 0 ) .  
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Figure 3. The relaxation time (A plotted against the difference in composition (0.5-x,). 
The line is drawn as an aid to the eye. 
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